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ABSTRACT
In this paper are presented some properties of smooth cocycles over irra-
tional rotations on the circle with values in the group SU(2). It is proved
that the degree of any C?-cocycle (the notion of degree was introduced
in [2]) belongs to 27N (N = {0,1,2,...}). It is also shown that if the
rotation satisfies a Diophantine condition, then every C"*®-cocycle with
nonzero degree is ('*°-cohomologous to a cocycle of the form
€2"i (re+w) 0

Taxr— [ 1] e-?m‘(rr-f—w)] € SU('Z),
where 277 is the degree of the cocycle and w is a real number. The above
statement is false in the case of cocycles with zero degree. The proofs are
based on ideas presented by R. Krikorian in [6].

1. Introduction

By T we will mean the circle group {z € C;|z| = 1} which most often will be
treated as the group R/Z; A will denote Lebesgue measure on T. For every v > 0
we will identify functions on R/4Z with periodic of period v functions on R.
Let @ € T be an irrational number. We will denote by T: (T,A) — (T, A) the
corresponding ergodic rotation Tx = x + a.
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Let G be a compact Lie group, p its Haar measure. Let ¢o: T — G be a
measurable function. Denote by T,: (TX G, AC 1) = (Tx G, A ) the measure-
preserving automorphism defined by

Ty(r.g) = (Ta,g- ¢(v)),

called skew product. Every measurable function p: T — G determines the inea-
surable cocycle over the rotation T given by

o(@) - p(Ta) ... (T ) for n > 0,
M) =< e for n =0,
((T™x) - (T la) ... (T~ )™ forn <0,

which we will identify with the function . Then T7?(x,g) = (Tx,g- ™ (x)) for
any integer n. Two cocycles p,¢: T — G are cohomologous if there exists a
measurable map p: T — G such that

(@) = ¥pl) = p(a)y(a)p(T).

For any s € NU {oc} if ¢, ¢, p are of class C?, then we will say that ¢ and ¢ are
C*-cohomologous. If ¢ and i are cohomologous (C*-cohomologous resp.), then
the map (x, g) > (x, p(a)g) establishes a metrical isomorphism (C*-conjugation
resp.) of T, and Ty.

In the case where G is the circle a lot of properties of a smooth cocycle o: T — T
and the associated skew product T, depend on the topological degree of ¢ denoted
by d(yp). For example, in [5] A. Iwanik, M. Lemaiiczyk and D. Rudolph have
proved that if ¢ is a C%-cocycle with d(y) # 0, then T, is ergodic and it has
countable Lebesgue spectrum on the orthocomplement of the space of functions
depending only on the first variable. On the other hand, in [3] P. Gabriel, M.
Lemaiiczyk and P. Liardet have proved that if ¢ is absolutely continuous with
d(¢) = 0, then T, has singular spectrum. Moreover, if « is Diophantine, then
every C-cocycle ¢: T — T is C*°-cohomologous to a cocycle of the form T 3
x> e2mid(R)T+w) ¢ T where w is a real number.

The aim of this paper is to study how the value of degree influences properties
of cocycles in the case where G = SU(2) (the notion of degree for cocycles with
values in SU(2) was introduced in [2]).

1.1 NotAaTION. For a given matrix A = [ai;]i j=1,2 € M2(C) define the norm of
Aby |4 =
su(2). ie.,

% 2,2 j=1laij|?. Observe that if A is an element of the Lie algebra

4 ia b+ ic
A= [—b+i(: —ia ]’
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where a.b,c € R, then || 4| = v/det A. Moreover, if B is an element of the group

SU(2), ie..
4= [ L _2]
—2I2 Il

where =y, 29 € C, |21]?+|22])? = 1, then Adp 4 = BAB™! € su(2) and || Adp 4|| =
[l4]]- By T we will mean the maximal torus in SU(2). i.e., the subgroup of SU(2)

- . = 0
containing all matrices of the form [ 0 =l where : € T.

Let X Dbe a Riemann manifold. Asswume that X' is compact. Then by
L'(X, su(2)) we mean the space of all functions f: X — su(2) such that

Il = [ @I < .

where ) is normalized Lebesgue measure on Y. The space LT(X. su(2)) endowed
with the norm |} - || is a Banach space. Consider the scalar prodnct of su(2)
given by

(4.B) = —% tr(Ad A o Ad B).

Then ||4)] = /{4, 4). By L%(X.su(2)) we mean the space of all functions
f+ X = su(2) such that

Ifll2x) = \//x F()2dA(x) < oc.
For two fy, fo € L?( X, su(2)) set
(e fdion = [ (i) Lol iN).

The space L2( X, su(2)) endowed with the above scalar product is a Hilbert space.
For every s € NU{oc} we will denote by C**(X., ST (2)) the set all C*-functions
on X with values in SU(2). For any ¢ € C'(R, SU(2)) denote by L(p): R — su(2)
the function L(p)(x) = Dg(x)(p(x))~!. For any C*-function v: T — su(2)
(s € N) set
[ sup 1D ¢ ().

For two ¢, ¢' € C*(T, SU(2)) define
e = vllcr = max(sup () = 0L 1EG) = LEewn ).

Then (C*(T,.SU(2)), || - — - llcs) is a metric space for any natural s.
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1.2 DEFINITION OF DEGREE AND BASIC PROPERTIES. One definition of degree
for cocycles with values in SU(2) was given in [2]. The following result establishes
the base of this definition.

THEOREM 1.1: For every o € CY(T,SU(2)) there exists a measurable and
bounded function ¢»: T — su(2) such that

1
ﬁL(cp(")) — 4 in LY(T,su(2)) and A-almost everywhere,

as n — Foo. Moreover, Ad, ;) ¥ (Tx) = (x) and ||y (x)|| is constant for a.e.
r€eT.

Proof: First notice that

(n) Z Ad@(“ )o Th)

L(pt) = ZAdso< o T7%) = = Ad-m (L(¢™) 0 T™™),

for any natural n. Let us consider the unitary operator
U: L*(T,su(2)) = L*(T.su(2)), Uf(x) = Adyq) f(Tx).

Then U™ f(x) = Ad () fF(T"2) and U™ f(x) = Ady-n)(p) F(T™"2) for any
natural n. Therefore

nl

¢™) ZUk and L(cp(”) ———ZU"

By the von Neuman ergodic theorem, there exist U-invariant ¢4,y_ €
L*(T,su(2)) such that

1
lim lL( My =y, and  lim —L(p\™™) =y_

n—+o0 N n—a+o00 N

in L%(T, su(2)). Next observe that
2@ 4 v @) = Adun (-%wa “2) 4 (1))
= |rEe @) vy )|

It follows that ¢ = v = —¢_. Moreover, |[¢(2)] = ||Adyq) ¥(Tx)|| =
llv(Tz)||. Hence ||¢(x)|] is constant for a.e. & € T, by the ergodicity of T'.
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Let ¢ € L¥(T x SU(2),s5u(2)) be given by ¢(x,g) = Adg L(p)(x). Then

P(T;(x,9)) = Adg (U™ (L{9))(x))
for any integer n. Therefore

n—1

L BT g)

n
k=0

Ady (SL(")(@) =

and .
Ad, (%L(@(_”))(:zr)) _ 717 3 ST (. g)
k=1

By the Birkhoff ergodic theorem & /'~ é«; T"'(:n g)) and =30 AT %(a.g))
converge for A @ p-a.e. (x,g9) € T x SU(2) (s is the normalized Haar measure of
SU(2)). Consequently, by the Fubini theorem, L1 L(p!™)(x) and 1L(x(=™)()
converge for a.e. x € T, which completes the proof. 1

Definition 1: The number

1 1
— im X nom = inf ||=L(p™
“1/’” - n-l—il:}:loo H 'II,L((P )H nGIZn\f{O} ll n L(Y )”Ll

will be called the degree of the cocycle ¢ and denoted by d(¢).

It is easy to check that degree is invariant under the relation of C'-cohomology.
The following theorem indicates an iimportant property of cocycles with nonzero
degree.

THEOREM 1.2 (see [2]): Suppose that ¢: T — SU(2) is a C-cocycle with d(yp) #
0. Then the skew product is not ergodic and ¢ is cohomologous to a measurable
cocycle of the form

0~
where v: T — T is a measurable function. Moreover, all ergodic components of
T, are metrically isomorphic to the skew product T,: Tx T — T x T and T, is
mixing on the orthocomplement of the space of functions depending only on the
first variable.

To>xw— [7(1) —0—] €x,

1.3 MAIN RESULTS. An important question is: what can one say on values
of degree? It is easy to see that if a cocycle ¢ is cohomologous to a cocycle
with values in the subgroup ¥ via a smooth transfer function, then d(y) € 27N
Moreover, if « is the golden ratio, then the degree of any C"?-cocycle helongs to
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27N (see [2]). In the paper we extend this result to all irrational « (see Theo-
rem 2.7). A completely different phenomenon occurs in the case of cocycles over
multidimensional rotations. For details we refer to [2, §8.9]. Moreover, we prove
that degree is invariant under the relation of measurable cohomology (see Theo-
rem 2.10). The proofs of Theorem 2.7 and 2.10 are hased on the renormalization
algorithm for some Z2-actions on R x SU(2) presented by R. Krikorian in [6] and
on the following result.

THEOREM 1.3: For every C*-cocycle p: T — SU(2) we have

lim -—DL( Sy () =0

n—toc n
for a.c. v € T.
Proof: First observe that
1 n—1k-—-1 n-—1{
DL =5 =3 S L) UAL +—Zl (DL(p
k=0 j=0 k=0
n k—1
. n) r—k ,, - —k
nzDL( 72;; ) U™FL(g)] Zl (DL(p

for any natural n # 0. Next note that if {ay}ren is a bounded sequence in su(2)
such that % > ko) @i converges, as n — +oo, then

n k-1

3 ZZ[GJ,(LA

k=1 j=1

tends to zero, as n — +00. This follows by the same method as in [2, Prop. 6.6].
It follows that
lim —DL( M) (x) =0

noo 12
whenever
lim —L(p™)(x
A L
exists. Now applying Theorem 1.1 completes the proof. |

Now assuming Theorem 2.7 we get the following simple conclusion.

COROLLARY 1.4: Let o be an irrational number and let A: T — SU(2) be
a constant cocycle. Suppose that ¢: T — SU(2) is a C?-cocycle such that
e = Allcr < 27, Then d(p) =0

Proof:  Since d(p) < ||L(¢)|lco and ||L(@)||ce < 27, we have d(p) < 2m. As
d(p) € 2rN we obtain d(p) = 0. ]
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We should compare this with the following result, which is due to M. Herman
[4].

PRrROPOSITION 1.5: For any irrational o the closure (in the C™-topologv) of the
set of all C*®-cocycles which are not ('°°-cohomologous to any constant cocycle
contains the set of all constant cocycles.

It follows that for any irrational « there exists a C™-cocycle ¢: T — SU(2)
with d(p) = 0 which is not C°°-cohomologous to any constant cocycle. For
any 7 € N and w € R we will denote hy exp,,.: T — SU(2) the cocycle

rae’
exp, . (¥) = 2T yyhere b = (I] _01] Oun the other hand, in Section 3
{see Theorem 3.1) we show that if a satisfies a Diophantine condition. then ev-
ery C'™-cocycle ¢: T — SU(2) with d(y¢) = 2mr # 0 is C"*-cohomologous to
a cocycle exp, . (this result has been independently observed by R. Krikorian
but has not been published). This indicates the next essential difference hetween
cocycles with zero and nonzero degree. The proof of Theorem 3.1 is based on a
result (see Proposition 3.3) describing C'**-cocycles in some neighborhood of the

cocycle exp, o, and which was proved by R. Krikorian {6, Th. 9.1}.

2. Values of degree

2.1 Z*-ACTIONS ON R x SU(2) AND THE RENORMALIZATION ALGORITHM. For
the background of the contents of this section we refer the reader to [6]. Let
s € NU {oc}. For any a € R and A € C*(R, SU(2)) we will denote by (a, A) :
R x SU(2) = R x SU(2) the skew product

(a, A)(v,g) = (r + o, g - A(2)).

Let a be an irrational number. We will consider Z2-actions on R x SU(2) of the
form ((1,C), (a, 4)), where A,C € C*(R,SU(2)), i.e., Z actions generated by
commuting skew products (1,C') and («, A). Suppose that ((1,C), (o, 4)) is a
Z2-action. Then

Alx) - Cle+a)=Ca)- A(x + 1)

for any real x. Note also that if C = Id, then 4: R — SU(2) is a periodic
function of period 1. Therefore we can identify any cocycle A: T — SU(2) over
the rotation Tx = x + o with a Z2-action ((1,1d), (o, 4)). We can extend also
the relation of cohomology to Z2-actions. Two ZZ-actions ((1,C}), (o, 41)) and
((1,C3), (o, Ag)) are C°-cohomologous if there exists B € C*(R, SU(2)) such
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that
(0,B)o(1,C1) 0 (0, B)™! =(1, Cy),

(07 B) ° (Oé, Al) 0 (0’ B)_l =(a’ A2)v
or equivalently
B(x)™- () Blx + 1) =Ca(a),
B(x)™'- Ay(x) - B(z + a) =Ay(x).
Notice that every Z2-action ({(1,C), (a, A)), where A,C € C*(R, SU(2)), is C*-
cohomologous to a cocycle ((1,1d), (o, A)). For details we refer to [6].
Assume that a € [O, 1) is an irrational number with continued fraction
expansion

a=|[0;a,as,...].

Let (pi/qx)7> _, be the convergents of & (p_; =1, g_; = 0). For every k > -1
set

B = (—l)k‘(qka ~pp) and  ag = [0;ap+1, Gryos .-

Then

1 —— < P < —,
o Gk + Q41 * Gk+1
(2) Br—2 = axBr—1 + Bk,
(3) /3k=ao'(11'...-(1k,
(4) Bedr+1 + Brpr1ge = 1.

Let ((1,C), (a, A)) be a Z2-action such that A,C € C*(R, SU(2)). Consider
the sequence {(U, Vi) }22, of Z2-actions defined by

(Uo, Vo) =((1, C), (e, 4)),
([]/\HVk) :(‘/k_l,‘/}:_alk[/vk_l) for k 2 1.

Set Ri((1,C), (o, A)) = (U, Vi.). Then

Ri((1,C), (a, A)) =((Uy " VO‘Jk*l)(—l)k"’ (UFP VOQk)(‘l)k)
=((Br=1,Cr)s (Brs Ar)),
where Ay, Cy, € C3(R, SU(2)). Note that

(5) (Uo, Vo) = (U= UR V),
Observe that if C = Id, then

(6) C, = A e ang A, = AGD ),
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For every & € N set
C~7,,.(.r) = Cr(Br_12) and fik(w) = Ap(Br-12).
We will also consider the renormalizations of ((1,C), (a, A)) defined by
Ri((1,C), (o A)) = (1, C), (aw, Ak)).-
2.2 DEGREE OF Z2-ACTIONS. Suppose that A,C € C}(R/7Z,SU(2)), where
5 > 0. Then A, Cy € CY(R/YZ, SU(2)) for any k € N. Define
di = di((1,C), (o, A)) = Bl L(Ci)ll L2 ®/r2z) + Br— | LA L2 (R /4 2)-

Of course, d;, does not depend on the choice of 4, because we always consider
normalized Lebesgue measure on R/4Z. Observe that dy < di—;. Indeed, since

Ap(x) = Cra (@) Ap—1(x + Br—2 = Bre=1) - - - Ax—r (@ + Br—2 — arPBr-1),
Cr() = A (2),
we have
NL(AM L @/vzy SHL(Ch-DllLr @ /42) + @rll L{Ak-1) |1 (v /42)»
IL(Cll Ly v/rz) =NL(Ak=D L1 ®/42)-
It follows that
di = Be||L(C)|lLr (R /42 + Br-1 I L(AR)|| L1 (R /72)
< Bt L(Cre) @ /rz) + (arBe—1 + BIL(Ar-1) |l L1 v /42)
=dp_y,
by (2).

Definition 2: The number
d((1,C), (a, A)) = Llim di((1,C), (e, A))
b— 00

will be called the degree of the Z?-action ((1,C), (o, A)).

Of course, we should check that the above definition is the extension of
Definition 1. Suppose that 4 = ¢ € C}(T,SU(2)) and C = Id. By Defini-
tion 1 and (6),

1
Gr-1

o1 .
Jim a”L(Ak)HLl(ﬂr) = lim ——||L(Cy)llL1(r) = d(p)-

Since Brgr+1 + Be+1qx = 1, we obtain d(¢) = d((1, C), (a, 4)).
In the following two lemmas are presented fundamental properties of degree.
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LEMMA 2.1: Let A,C € CY(R/~Z,SU(2)) and v € CY(T, SU(2)). Suppose that
the Z2-actions ((1,C), (o, A)) and ((1,1d), (@, ¢)) are C'-cohomologous. Then
d(p) = d((1,C), (a, A)).

Proof: Let B: R — SU(2) be a C*-function such that

(0,B)o(1,C) 0 (0,B)"! = (1,1d),
(0, B)o(a,A) o (0,B)"! = (a,y).

Then
k-1
(0, B) 0 (Bk-1,Ck) 0 (0, B) ™ = (Bp—1, =D -1y,

(0, B) o (Br, Ak) 0 (0, B) ™" = (B, (=D a0)),

Hence k
B(z)™' - Cr(x) - B(x + Brey) = "D a1 (),

B(xz)™' - Ax(x) - Bz + Bi) = "V ) ().
It follows that

k=1
WLC 1 @®/4z) — 1L =) 14 (0,4
SN oy + LB L1 ((Bi—1.B—1+)

and

k
LA L ®/Az) — LT ) L g0,
< HLBMer o) + ILB L2 (184 8i4+1)) -

Since %I|L(<p("))(x)|| — d(y) in L*(T,R), as n — oo (by Theorem 1.1), we have

1 1)k g
q—k||L(<P(( D79) || L1 0,4y — dlep)-

Moreover, ”L(B)”LI([ﬂkﬁk-{'-’Y)) § 2||L(B)||L1([0’2,7)) Therefore

1 o ~
Jim q—kHL(Ak)llLl(R/vz) = lim %—_11|L(Ck)iEL1(R/~{Z) = d(¢p).

Since Brqr+1 + Br+19x = 1, we obtain d(p) = d((1,C), (o, 4)). ]

Let ¢ € CY(T,SU(2)) and let ((1,Cr), (o, Ax)) = R((1,1d), (0, ). Then
Ay, Cr € CY(R/B:1,Z,SU(2)).



Vol. 139, 2004 DEGREE OF COCYCLES 303
LEMMA 2.2: d((l,ék), (ak, fik)) = d(tp)

Proof: For every v > 0, by Sy: R — R we mean the linear scaling S,r = yr.
It is easy to check that

R ((1,Cr), (a, Ay))
= ((Brth—1/Bk—1, Cntk © Sgo 1 )s (Brtk/Br—1, Antr © S, _,))-
Therefore
dn((1,Ch), (oks A)) =Brk-1/Brt | L{Crtk © S, Mooy
+ Brtw/Br-1l L{Ansk 0 Spe_ 10,870, )

B8,
Bkt / IL(Cog © Sp_) (@)lldz
0

B,
T Busk /O IL(Ansi 0 Sp,_,) (@) |de
=Bk [IL(Cryi)llLr vy + Brak | L(Ansr) | L1 (T)-

It follows that dy, ((1,Ck), (ax, Ax)) = d(p), as n — oo, which proves the lemma.
|

We recall a quantity J() introduced in [6]. For any function ¢: R — SU(2)
and y € T we will denote by ¢,: R — SU(2) the function ¢y(z) = (z + y).
Write ((1, Cyy)s (ks Aky)) = Re((1,1d), (o, 9y)). Then

Cry(@) = Crlx+ B7ly) and  Ag,(x) = Ap(e + 371 y).

Let ¢: T — SU(2) be a Cl-cocycle. For every y € T define
1 - gy -
T = [ M) @l + [ IECe) @)l

y+Br—1 y+5s
- / 1L (A (@)l dx + / IL(C) (@) |dz.
Yy Y

It is easy to check (see [6]) that Ji(y) < Je—1(y). Let J: T — R be given by
J(y) = limg oo Jx(y). Next note that J(y + «) = J(y) for any y € T. Indeed,
first observe that

Pz - @) = pla = 0) - ¢z) - oo+ (n = Do)
for any integer n. Hence

L") (@ = a)ll = ILE™) @] < IL(e(x = a)ll + IL(e(z + (n = 1)a)].



304 K. FRACZEK Isr. J. Math.

It follows that for every y € T and i = —1,2 we have

y+a+Biti R y+3u4i .
/ 1L )@~ [T L ) @)
y+a y

y+Bk+i y+(=1)* B +Brti
< [T @@l [ IL() )iz 0,
y y+H(=1)* B
because B4; — 0. Therefore J(y+a) = J{y), by (6). Since J: T — R is the limit
(the convergence is pointwise) of a decreasing sequence of continuous functions,
it follows that J is constant. Define J(p) = J(y) for any y € T. In the next
section we show that if ¢ € C%(T, SU(2)), then J(y) = d().

2.3 FUNDAMENTAL LEMMAS AND THE FIRST MAIN THEOREM. Suppose that
¢: T — SU(2) is a C2%-cocycle. Let ¢: T — su(2) be a measurable function such
that
%L(Lp(")) — 9 in L(T, su(2)) and almost everywhere,
as n — £00, Ad,m (¥ o T™) = ¢ and |[¢(2)]| = d(p) for ae. @ € T (see
Theorem 1.1).

We give a few asymptotic properties of the renormalization R which we will
need in proofs of the main theorems.

LEMMA 2.3: For a.e. y € T we have

1 A N (1R

A L) @) = (D ) = 0.
1 A—1 e (—1Yra)

o HCy) (@) = (1)) = 0,

uniformly for x € [-1,1] and ||¢(y)| = d(¥).
We will denote by A(yp) the set of all points y € T satisfying the properties of
Lemma 2.3 and such that

lim ~L(e™)(y) = ¥(y).

n—too N
To prove the above lemma we need the following simple fact.

LEMMA 2.4: Let {cn}nen be a sequence of positive numbers which converges to
zero. Let {f,}nen be a sequence of measurable functions on T with nonnegative
real values. Suppose that { f, }nen is uniformly bounded and f,(x) — 0 for a.e.

x € T. Then
1 Y+cn
— fa(z)dz =0

Cn Jy~—cn
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for a.e. y e T.

Proof: Fix ¢ > 0. By the Egoroff theorem, there exists a closed set B. such
that A(B;) > 1 — ¢ and

lim sup f,(x)=0.

n—o0 T€E BE

Denote by A. the set of all density points of B., i.e.,

Ae = {.1: €T; lim AB:N[r - 22+ 2]) = 1}.

=0+ 2z
Then A(A;) = M(B:) > 1 —¢. Assume that y € A.. Then
1 y+cn 1

— folx)de =— falz)de + 1 fu(x)da

Cn Jy—c, Cn Jly—cp.y+eaNB,. Cn Jly—cn.y+ea]\Be

)\([lj —Cpy Y + Cn] \ Bs)

<2 sup fu(x)+ sup fp(x).
TERB, Cn x€T
Letting n — o0, we obtain
1 yt+cn
o G
C'Il Y—=Cn
for every y € A.. Consequently, letting ¢ — 0 completes the proof. 1

Proof of Lemma 2.3: Let us denote by A’(yp) the set of all points y € T such
that

e (=1 a0))
lim - / DL e Y|dx = 0,
fim s [ DL @)

1 y+2585 3 .
lim ——/ HDL(',Q((‘U qk_x))(l,)”dl,:()’
k—oo /3/\ 1(11. 1 281

lim —LW(" ) =9(y)

n—toc 7

and ||¢'(y)|| = d(y). By Theorems 1.1, 1.3 and Lemma 2.4, the set A’(p) has full
Lebesgue measure. We claim that A’(¢) C A(p). Assume that y € A’(p) and
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€ [-1,1]. Then

| L) @)~ LD )|

Br—1qk ’ Qk
= l)iL(¢((—1)“Qk))(ﬂk_lx) — iL(¢((—1)*qk))(0)"
Y Y
1 Br-1 R
< — IDL({{"V"9))(2)||d=
k J—py_y
1 Y+Br-1 1k
ity [ DL ) @)
Br— qk Y—Br-1
and
- 1 K
—  LEY(2) — —— L( D) H
= e (Ciy)@) = Ly )W)
= H A )(ﬁk—ﬂi))——l-L(v((_”kq’”“))(O)H
qk— 1 dk
‘||—L (0 D) (s (@ - (1)) — —— LD #=)(0)|
k-1
I ((-1)*gi-1)
< — IDL( 0y, “V)z)||dz
k-1 J-28;,_,
1 Y+28k -1 1k
—Batinig o [ DL ) o)
Br—145_1 Jy-28,_,
From Br_19x—1 < Br-19x < 1, using Theorem 1.3 and Lemma 2.4 we have
1 - 1
L(Agy)(x) = —L(! 0" ) () > 0,
qkBr-1 k
1 = 1 k
L le ) — —— L{p{(=1)"ak-1) -0,
qk—lﬂk—l ( k,y)( ) qk—l (4}9 )(y)
uniformly for z € [-1,1] and |[¢(y)]] = d(¢). Moreover,
1 vk,
" LT =) () — (= 1)*9p(y) - 0
—1

for i = 0,1. It follows that y € A{yp), and the proof is complete. |
COROLLARY 2.5: Let ¢: T — SU(2) be a C?-cocycle. Then J(p) = d().

Proof:  Choose y € A(p). Then

L) @)~ dio).

1

mHL(CA W (@) = d(p)
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uniformly for z € [-1, 1]. Therefore

1
1 .
Tu0) =aehies [ (k) @)
0 kPk-1
1o -
+Qk:—1/3k£/o m||L(Ck,y)(x)||d9«"

tends to d(y), by (4). It follows that J(y) = d(p) for a.e. y € T, which completes
the proof. |

LEMMA 2.6: Let p: T — SU(2) be a C?-cocycle. Assume that 0 € A(yp). Then

(7) Ap(x) — HAOz 4,0y 5 0,
(8) C () — L2 G (0) — 0,

uniformly for z € [—1,1]. Moreover, the matrices A(0), C71(0), L(Ax)(0) and
L(C‘A_ 1)(0) asymptotically commute each other, i.e.,

(9) [L(Ax)(0), L(C;1)(0)] = 0,
(10) L(Ax)(0) — AdAk(O)L(Ak)(O) -0,
(11) L(CTH0 )—Adc— 10 L(C)(0) =

(12) L(CH(0) ~ Adg, o) L(C 1)(0) — 0,
(13) L(Ax)(0) = Adg-1 () L(Ar)(0)

and if d(¢) # 0, then

(14) AR(0)C7H(0) = G H(0) Ax(0) — 0.

Proof: First note that

L(A)(x >—L< “Ak)‘“ﬂm(o»(w) = L(Ay)(z) — L(A4)(0) = 0,

LG (@) = LEMEDOOC0) (@) = LG (@) = LIGF)(0) > 0,

uniformly for z € [-1,1] and
Ag(0) = eL(/ik)(O)OAk(g)’ o1 0) = 6L<é';‘>(0)0@k—1(0)_

This implies (7) and (8). (9) follows immediately from assumption. Since

(L) (0) = Adyo ) L ™) (n0)) = 2( SLE)(0) = o L(p®)(0)) = 0,
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as n — oo, we have

Qi Br—1 (L(4x)(0) = Adg, o) L(Ap)((-1)* o))
= (L) 0) - Ad

qr a1)(0) L(p{ 1 )(=1)*3y)) — 0.

Since (1/qrBr-1)(L(Ag)((—=1)*ay)) — L(AL)(0)) tends to zero,

Qkﬂl/c—1 (L(A)(0) - Adg,0) L(Az)(0)) = 0.
Similarly,
— Sl ot
Qk 18k 1(L( )0) - Ad L(C;)(0)) —

This leads to (10), (11), (12) and (13).

Suppose that d(¢) # 0. Then the sequence {||L(A;)(0)[|}32, is bounded and
separated from zero. Since L(fik)(O) asymptotically commutes with Ak(()) and
C;(0), it follows that

A0)C(0) = G (0)Ak(0) 0.
THEOREM 2.7: Let p: T — SU(2) be a C?-cocycle. Then d(y) € 27N.

Proof:  First note we can assume that 0 € A(y), because degree is invariant
under the rotation by any element from the circle. Then d(p) = ||4(0)]. Next
assume that d() # 0. Since ((1,Cr), (ax, Ag)) is a Zz-actlon,

Ap(2) - Oz + ar) = Cr(a) - Ap(x + 1) for any real 2.
Hence
Ci1(0) - Ax(0) = A(1) - O H(aw).
From (7) and (8),
A1) = ePARNO 4, (0) - 0,
Cil (ag) - e”ékfl)(o)“’“é,:l(o) - 0.
Therefore

G (0)Ap(0) — 2RO F (0)eLETOex 1 (0) — 0.
Applying (9)—(14) we get

eLANO+LET ) Oak _ 1q |
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On the other hand,

L(A:)(0) + L(C 1) (0) e
1
qlc/3k-1

iy _ 1 _
L(A)(0) + g1 8t ———L(C;71)(0) = v(0).
h—13k—-1

= qrBr-1

Therefore e¥(%) =Id and d(y) = ||¢(0)|} = 2nrr, where r € N. |

By the same method as in the proof of Theorem 6.3 of [6] one can prove the
following result.

LEMMA 2.8: Let o: T — SU(2) be a C*®-cocycle and let N be an infinite subset
of N. Suppose that ¢ satisfies (7)-(14) and

IL(A) ) + LICF ) O)arll = 2,

where » € N\ {0}. Then there exist an increasing sequence {nz}$2, in N,
a sequence {pp}p2, in C™(T.SU(2)) and a real number w such that
((1. C*,\) (otn,, s fink)) and ((1,1d), (ap, ., pr)) are C*-cohomologous and

lim ”“pk - eXpr,uv“C's =0
k=00

for any natural s.

Additionally, applying Lenmunas 2.3-2.8 and Lemmas 2.1 and 2.2 gives the
following conclusion.

COROLLARY 2.9: Let o: T — SU(2) be a C"*°-cocycle with d(p) = 2nr # 0 and
let N be an infinite subset of N. Theu there exist y € T, an increasing sequence
{nr )}, in N, a sequence {p}32, in C(T, SU(2)) and w € R such that
o the Z%-actions Ry, ((1,1d),(a,¢,)) and ((1,1d), (on,.or)) are
C*-cohomologous,
o dlpy) = d(p) = 2mr,

o limy_, [lor — exp, ,|lcs =0 for any natural s.

2.4 MEASURABLE INVARIANCE OF DEGREE. It is easy to see that degree is
invariant under C*-cohomology. In the simplest case G = T, degree is invariant
even under measurable cohomology, but the proof of this fact does not work in
the nonabelian case. Nevertheless, applying the renormalization algorithm we
are able to show measurable invariance of degree for C%-cocycles.
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THEOREM 2.10: Suppose that two C?-cocycles ¢1,p2: T — SU(2) are
measurably cohomologous. Then d(p1) = d(ps).

Proof: Let B: T — SU(2) be a measurable transfer function, i.e.,
B(z)™! - gi(2) - B(z +a) = pa(a).

Let us denote by A*(B) the set of all y € T such that

hm—/ 1By + 1) — B(y)|| = 0.

The set A*(B) has full Lebesgue measure. Suppose that y € A*(B). Next, for
every natural k denote by By, ,: T — SU(2) the function By ,(x) = B(Bxz + y).
Then

1Biy - B)llop = / IB(Biz + y) — B(y)|lde

1

2p3k
5 [ 1B+~ Blar o

For simplicity of notation let us assume that 0 € A(p1) NA(p3) N A*(B) and we
will write By, instead of By . Since

(O’ B) o ((led)v (Ct, (,91)) ° (O’ B)—l = ((I’Id)’ (O/, ‘1‘72))’

we have

(0, Bi) o (1, (1)), (e, Ak (1)) © (0, Bi)™F = ((1, Ci(02)), (e, Ar(22)))

for any natural k. It follows that

Bi(x) ™" - A1) (@) - Bi(x + ax) = Ax(p2)(x)-

Next choose an increasing sequence {ny}ren of even numbers such that
An (90)(0) = A; € SU(2),
fori=1,2 and
anﬂnk—l — Q.
Then
L(An,) (i) (x) = a(p:)(0)

uniformly for z € [~1,1] for i = 1,2 and 0 < «, by (1). Moreover,

A, (01)(x) o eV (@O 4,
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uniformly for 2 € [-1,1] for i = 1,2, by (7). Since By, — B(0) in L?[0, 2],
B(O) ™. e} Oz 4 B(0) = eV (@2)(0)z 4,
on [0,1]. This leads to
ad(p1) = all¥(p)(0)]] = |L(e* VO 4y))|

= |[|L(B(0)~" - e®¥ ()0 4, . B(0)))
= [|L(e®¥ O 45) || = al|t)(2)(0)]| = ad(s2).

Since 0 < a, we conclude that d(p1) = d(y2). |

3. The case of rotations satisfying a Diophantine condition

For every v > 0 and ¢ > 1 define

CD(y,0) = {a € T;Vieemo), tez [k — 1| > 1/(v£7)}.

Let us denote by ¥ the set of all @ € T such that there exist v > 0 and o > 1 for
which ay € CD(v, o) for infinitely many k. Since any set CD(v, o) has positive
Lebesgue measure, the set ¥ has full Lebesgue measure, by the ergodicity of the
Gauss transformation. In this section we prove the following result.

THEOREM 3.1: Let a € ©. Suppose that ¢: T — SU(2) is a C*°-cocycle with
d(¢) = 2mr # 0. Then ¢ is C*°-cohomologous to a cocycle exp, ,,, where w is a
real number.

To prove it we need the following fact.

LEMMA 3.2: For every v > 0, ¢ > 1 and r € N\ {0} there exist so € N and
€0 > 0 such that for any o € CD(v,0) and any ¢ € C*(T, SU(2)) if

o llo = expyollcn < <o.

o d{p) =2mr #0,
then ¢ is C'°°-cohomologous to a cocycle exp,. ,,, where w is a real number.

The above lemma (its proof will be given later) is a conclusion from the fol-
lowing result proved by R. Krikorian [6, Th. 9.1].

PROPOSITION 3.3: For every v > 0, 0 > 1 and r € N\ {0} there exist so =
so(7y,0,7) € Nandeg = =¢(7,0,7) > 0 such that for any o € CD(v,0)N(1/5,1/4)
and any ¢ € C*(T,SU(2)) if || — exp, gl|lc=0 < €0, then

e cither J(p) < 2mr,
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¢ or ¢ is C*°-cohomologous to a cocycle exp,. ,,, where w is a real number.

Proof of Theorem 3.1: Take v > 0 and ¢ > 1 such that the set N =
{k € N, a;, € CD(v.0)} is infinite. Choose sy € N and g > 0 satisfying
the properties of Lemma 3.2. By Corollary 2.9. there exist y € T, an increasing
sequence {n,}32, in N, a sequence {yx}i; in C(T, SU(2)) and w; € R such
that

® oy € CD("/,O‘),

e the ZZ-actions 'fé,u_((l,ld), (avy)) and  ((1.1d), (an,.pr)) are

(™ -cohomologous,

o d(pr) = d(p) = 27r,
gy I C%(T, STU(2)).
Let k be a natural number such that || — exp, ,, [lcso < £0. By Lemma 3.2,

® o, — exp

@r is C>-cohomologous to a cocycle exp,. ,,,,» where w, is a real number. Let
A, C: T — % be C*-functions such that
(1.C) =(3ny—1.1d) % 0 (B, xD,. ,, © Sg-1 )T,

ng—1

(o, A) =(Bn—1. 1A)P"% 0 (B, XDy o, © Sﬂ;’:_l)”"k-‘.
Since ﬁnk ((1,1d), (. py)) and ((1,1d). (an,.exp,,,)) are C*-cohomologous,
Rn, (1L1d), (@, ¢y)) and ((3,,—1.1d), (B0, XD, 0, © Sﬁ;:_l)) are (C°°-cohomo-
logous, too. From (5) we see that ((1,Id). (a, ¢,)) and ((1,C), (o, A)) are C-
cohomologous. Moreover. {((1.C). (o, A)) is C*-cohomologous to a Z?-action of
the form ((1,1d). («,&)), where £&: T — T is a C*°-cocycle. Then the cocycles ¢,
and & are C"°-cohomologous. Let g: T — T be a C'*°-cocycle such that

RO F1C R U
=" oo
and d(g) > 0. If d(g) < 0, then we can take

=[] [ 310 ]l ST

which is also C*°-cohomologous to ¢,. It follows that d(g) = r. Since o is Dio-
phantine, g is C°-cohomologous to a cocycle of the form T 3 x + e27i(rrtws) ¢
T, where wj is a real number. It follows that ¢ is C°-cohomologous to the

cocycle exp which completes the proof. |

rawg =y

3.1 LACKING PROOF. To prove Lemma 3.2 we need the following facts.
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LEMMA 3.4: For every v > 0 and 0 > 1 there exist v/ > 0,0’ > 1and M € N
such that for every a € CD(y, o) there exists a natural number 1 < m < M for
which ma € (1/5,1/4)NCD(¥,d’).

Proof: First recall that if o € CD(%,0), then

1
e 7 < (InIQH pnl < ‘In+1.
Hence gn41 < ¢! for any natural n. It follows that there exists C' = C, , > 0
such that a € CD(v.0) implies 20 < ¢; < C.

Suppose that o € CD(y,0). Then

1

<—1—<{ }< ! - < 5
o 20°

20

It follows that there exists a natural number 1 < m’ < C such that
1 , 1
— < {m'gga} < -.
5 {mqea} 4

Hence there exists a natural number 1 < m < M = C? such that ma € (1/5,1/4).

Moreover,
1 1

o — | >
ko —1] > Amoke = yMOko

for any k € N\ {0} and [ € Z. Therefore we can take M = C?, 4’ = vM[? and
¢’ = o, and the proof is complete. ]

LEMMA 3.5: Let o: T — SU(2) and £&: T — T be C* cocycles. Let m # 0 be a
natural number. Suppose that (™ and &™) are C>-cohomologous as cocycles

over the rotation T™ and d(p) # 0. Then there exists A € ¥ such that the
cocycles ¢ and £ - A are C™-cohomologous, too.

Proof: Let g: T — T be a C"™-cocycle such that

g(®) 0 }
r)= — .
Then 27|d(g)| = d(€) = d(¢) # 0. By Theorem 1.2, there exist measurable
functions p: T — SU(2) and 4: T — T such that

(15) P(x) = p() [7((;7) . 3 l,)] p(Tx)~L.
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Let ¢: T — SU(2) be a C*®°-function such that

o™ (2) = ()€™ (x)g(T™x) 7"

Then
y™(z) 0 e g™M(z) 0 o\
w0 |7 | et =) |7 i e
Let
. _ a b
¢ 'p= [—B a]’

where a,b: T — C are measurable functions such that |a|? + || = 1. Then
a-y™ =g . (a0 T™),
b-y(m) =g (boT™),
ab =(g(™)? . ((ab) o T™).
Since d((g{™)?) = 2md(g) # 0, we get either a =0 or b= 0.

CASE 1: Suppose that b= 0. Then a: T — T and v{™ = g™ Moreover,

_ Ya() 0 -1

o(x) = q(z) [ 0 %(x)} q(Tz)™",
by (15). Hence v5: T — T is a C*®-cocycle. Using a standard Fourier analysis
method we can assert that there exists | € N such that v; = g-e2™%*/™_ Therefore

ox) = g(x)¢(x) [eQﬂ(i)l/m e_QBil/m,] q(Tz)~.

CASE 2: Suppose that a = 0. Then b: T — T and 'yt()m) = g(™}), Moreover,

o) =0 | s "V 5| ik 0 e

7(x)
’71,(:13) 0 J 1
=q(x Tz)™,
@) | " ey o
by (15). Hence v: T — T is a C*-cocycle and there exists [ € N such that
7 = g - e2™/™ which completes the proof. ]

Proof of Lemma 3.2: Fix v > 0, ¢ > 1 and r € N\ {0}. Let v’ > 0,
o' > 1 and M € N be constants satisfying the properties of Lemma 3.4. Take
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so = so(7',0') € N and ¢/ = =¢(7',0’) € (0,1) satisfying the properties of
Proposition 3.3. Next choose K, R > 0 such that

™ = T™[cen < Kl = $llow (14 lpllowo) (1 + [l )™

for any irrational a, any cocycles @, ¢ € C(T, SU(2)) and any natural 1 < m <
M. Define ¢¢ = &' /(K (27r + 2)28).
Suppose that a € CD(v,0) and ¢ is a C®-cocycle such that

llo —exp,ollcso <eo and  d(p) = 27r.
Then there exist a natural number 1 < m < M such that
ma € CD(Y,a') N (1/5,1/4).
Therefore

™ — exple)l[cr < Kl — exp, gllowa (1 + [[9llcw) R (1 + llexp, gllcwo )T
< Keg(|lexp, ollcso + 2)2F
< Keo(2mr +2)2R =¢'.

Moreover, J(p(™) = d(p(™) = 2rrm and exp%) = eXPppy.,» Where v =
rm(m — 1)a/2. By Proposition 3.3, ¢(™) is C*-cohomologous to a cocycle
expﬁm. Applying Lemma 3.5 we conclude that ¢ is C°°-cohomologous to a

cocycle exp,. ,,, where w is a real number. ]

A. More about degree

One may ask whether the degree of a cocycle depends on the base rotation or
only on the function, which creates the cocycle. Of course, the degree of a
cocycle is independent of the base rotation in the case where G = T. A different
phenomenon occurs in the case where G = SU(2). For any irrational o € T
and any C!-function o: T — SU(2) we will denote by d(, @) the degree of the
cocycle ¢ over the rotation by a. In this section we show that for any two distinct
a1, 9 € T with oy — ag # 1/2 there exists a C®-function ¢: T — SU(2) for
which d(p, a1) # d(p, «2). For every 3 € T let pg: T — SU(2) be given by

ps(r) = [ 0 =iz | _sin273 cos2nfB |’

e?rir 0 ] [ cos2nf3  sin27f3
e

To construct the desired function, we have to know d{(ps,«) for any irrational
a. Obviously, if 3 is equal to 0 or 1/2, then d(ps, ) = 27 for any irrational a.
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Suppose that 0 # 3 # 1/2. It is easy to check that |{L(pf32))(a')|| = 47| cos 27|
for any x € T and any irrational . Therefore

. 1 1 2
I 3, = f — L (n) < Z L (2) — .
d(ps, @) et o) =L Merery < S5 D21 (ry = 2] cos2mp| < 2m

It follows that d(pgz, ) = 0 for any irrational «.

THEOREM A.l: Let ay,aq be distinct elements of T such that a; — ag # 1/2.
Then there exists a C*°-function ¢: T — SU(2) for which d(¢, ay) # d(p, az).

Proof: Set
A_[l/ﬁ wz]
T liv2 1yv2)e
Then

cos2w3  sin2wp3 - Ad e2miB 0
—sin2r3 cos2np|” A 0 e

for any 3 € T. Define

6211'1’;1‘ 0 _ e27r'i,1‘ 0 b e—-27ri(:t+al) 0
99(;F)=|: 0 e 2mit A ! 0 —2mix A 0 e271'i(.v+011) .

Then

e2mic 0 B [ o= 2mi(x+az) 0
«,;‘(:IT)=[ 0 e—2miz A lpaz—ax(m)A 0 e2mi(z+az) |

Therefore ¢ and pg are C*°-cohomologous as cocycle over the rotation by «;
and ¢ and p,,_a, are C>-cohomologous as cocycle over the rotation by as. It

follows that
d(p, 1) =d(po, 1) = 1,

d(@* a?) :d(pa‘_’_al’ a?) =0,

and the proof is complete. ]
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