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ABSTRACT 

In this paper  are presented some properties of smooth  cocycles over irra- 

tional rotations on the circle with values in the group SU(2). It is proved 

that  the degree of any C2-cocycle (the notion of degree was introduced 

in [2]) belongs to 2:rN (N = {0,1,2 . . . .  }). It is also shown that  if the 

rotation satisfies a Diophantine condition, then every C°°-cocycle with 

nonzero degree is C°%cohomologous to a cocycle of the form 

e_27ri(rx+w) E SU(2), 

where 2~rr is the degree of the cocycle and w is a real number.  The above 

s ta tement  is false in the case of cocycles with zero degree. The proofs are 

based on ideas presented by R. Krikorian in [6]. 

1. I n t r o d u c t i o n  

By T we will mean the circle group {z C C; Izl = 1} which most often will be 

treated as the group R/Z;  A will denote Lebesgue measure on T. For every "~ > 0 

we will identify, functions on R / ? Z  with periodic of period "7 fimctions on R. 

Let c~ E T be an irrational number. We will denote by T: (T, k) --+ (T, A) the 

corresponding ergodic rotation T x  = x + a .  
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Let G be a compact Lie group, p its Haar measure. Let c2: li" -+ G be a 

measurable function. Denote l~  T~: (Tx  G, ,k~-)p) --+ (Tx  G, A~2,p.) the measure- 

preserving autonlorlflfism defined ~ ,  

T ~ ( x . g )  = ( T x ,  g .  ¢(.r)), 

called skew product. Every measurable flmction 4: ~i" -+ G determines the mea- 

surable cocycle over tile rotation T given by 

{ ~2(x) • ~(Tx) . . . . .  ~ ( T " - l x )  for n > 0, 
~( ' ) (x)  = e for n = 0, 

(~(r'x) .  ~(r '+l :r) . . . . .  ~(T-lx)) -1 for  ~, < 0, 

which we will identify with the flmetion c 2. Then T~ (x, g) = (T.r,  g .  ~( ' ) (x))  for 

any integer n. Two cocycles 4, '~': T -+ G are c o h o m o l o g o u s  if there exists a 

measurable map p: "It --+ G such that 

c2(x ) = ¢',p(.r) = p(:r) - l .~ / , (x)p(Tx) .  

For any s E Nt2 {oo} if ~2,'g',P are of class C ~, then we will say that ~2 and ¢, are 

C" -cohomologous .  If ~ and '~, are cohomologous (C~-cohomologous resp.), then 

the map (x, g) ~-~ (x, p(x)g) establishes a metrical isomorphism (C"-conjugation 

resp.) of T~ and T~,. 

In the case where G is the circle a lot of properties of a smooth cocycle ~2: T --+ T 

and the associated skew product T~, depend on the topological dega'ee of ~ denoted 

by d(~2). For example, in [5] A. Iwmfik, M. Lemaficzyk and D. Rudolph have 

proved that if ~ is a C2-cocycle with d(~2) ¢ 0, then T~ is ergodic and it has 

countable Lebesgue spectrum on the orthocomplement of the space of flmctions 

depending only on the first variable. On the other hand, in [3] P. Gabriel, M. 

Lemaficzyk and P. Liardet have proved that if ~ is absolutely continuous with 

d(~) = 0, then T~ has singular spectrum. Moreover, if a is Diophantine, then 

every C~-cocycle cp: "f --+ T is C~-cohomologous to a eocyele of the form T 

x ~-+ e 2~i(d(~)x+w) E T, where w is a real number. 

The aim of this paper is to study how the value of degree influences properties 

of cocycles in the case where G = SU(2) (the notion of degree for cocyeles with 

values in SU(2) was introduced in [2]). 

1.1 NOTATION. For a given matrix A = [aij]i,j=l,2 E M 2 ( C )  define the norm of 

A by HAll = Ei,j=l [aij[2. Observe that if A is an element of the Lie algebra 

su(2), i.e., 
[ ia b+ ie] 

A =  - b  + ic - i a  j ' 
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where a, b, e ~ R,  then IIAII = ~ A. Moreover', if B is an element of the gronp 

SU(2), i.e., 

whe~'e - , ,  =~ E ¢, I-,l~+l=~l ~ = L then AdR A = B A B - '  E su(2) and II Ad..411 = 
IIAII. By • we will mean the maximal torus in SU(2), i.e., the subgroup of SU(2) 

con ta in inga t ln la t r i ceso f the fo rn l  [ ;  015 ' w h e r e - E T "  

Let X be a Riemann manifbld. Assulne that X is compact. Then by 

L l (X, su(2)) we mean the space of all flmctions f :  X -+ ~u(2) such that 

= / "  U(.r)lldA(.,,) < ~ .  l l J l l l :¢x)  

where A is normalized Lebesgue measure on X.  The space L I(.Y, su(2)) endowed 

with the norm I I  IIL~ is a Ba1~aeh space. Consider the sea]m" product of ~u(2) 

given by 
1 

(A.B) = - ~  t r (AdA o AdB) .  

By L2(X. su(2)) we mean the space of all flmctions Then I[A[I --- ~ .  

f :  X -~ ~u(2) such that 

llfllL21x) : U(.r)h dA(.r) < ~. 

For two ft, f'2 E L2(X, su(2)) set 

( f"  f2)Y2(x) = ./ i  (f' (x), f2(x))dA(.r). 

The space L'2(X, zu(2)) endowed with the above scalar product is a Hilbert space. 

For every .s E NU {~c} we wil] denote by C s (X, SU(2)) the set all C'*-flmctions 

oil X with values in SU(2). For any ~ E C l (R, SU(2)) denote by L ( : ) :  R --+ su(2) 

the flmction L(~)(x) = D~(x)(~(x))  -1. For any C"-flmetion (,: T -+ su(2) 

(s ~ N) set 
I/¢:'llc~ = l l l a X  sup IIa%(,r)ll. 

O < k < s  ,rE'F 

For two ~, ~', E C"('L SU(2)) define 

II: - ('lie ~ = max(sup H:(x) -~:'(:r)ll, ILL(:) - L(~")llc,,-, ). 
,rE'~ 

Then (C~(T, SUI '2)L ll" - "  Ilc~) is a metr ic space for any natura! .~. 
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1.2 D E F I N I T I O N  OF DEGREE AND BASIC PROPERTIES.  One definition of degree 
for cocycles with values in SU(2) was given in [2]. The following result establishes 
the base of this definition. 

THEOREM 1.1: For e ~ r y  c 2 E Ct(T,  SU(2)) there exists a measm'able and 

bounded function '~,: T -+ su(2) such that 

1L(~0~)) ---+ ~/, in LI(T, su(2)) and A-almost everywhere, 

as n --+ :t:oc. Moreover, Ad~(x)'~,(Tx) --- ~(x) and Hg,(x)]] is constant for a.e. 
x 6 T. 

Proof  First notice that 

n--1 

L(~P(n)) = E Ad~(~.) (L(~;) o Tk), 
k=O 

L(~ (-'~)) = - ~ Ad~(-k)(L(~;) o T -k) : - Ad~(-,)(L(~; (')) o T-n) ,  
k----1 

for any natural n. Let us consider the unitary operator 

U: L2(~,~u(2)) --+ L2(T, su(2)), Uf(x )  = Ad~(~)f(Tx).  

Then Unf(x )  = Ad~(,,)(~)f(Tn.r) and U - n f ( x )  = Ade( - , ) (x ) f (T-"x)  for any 
natural n. Therefore 

n-  1 1 " 
1 E U k ( L ( ~ ) )  and 1L(~("))  E U - k ( L ( ~ ) )  1L(~('*)) = n 7, n 

k=0 k=l  

By the von Nemnan ergodic theorem, there exist U-invariant g,+, ~!,_ C 
L2(T, ~u(2)) such that 

lira 1L(~( '~))=~,+ and lira -1L(~(-'~))=~',_ 
n-+Te~ ;l n--}+~ ?/ 

in L2(T,~u(2)). Next observe that 

1L(~(-n))(x) + ~/,+(.~:) = Ad~(-,,)  ( -  1L(~('O)(T-'*x)+~/,+(T-'~x)) 
: 1 L ( ~ ( n ) ) ( T - ' x )  - g ,+(T- ' x )  . 

It follows that t/, = t/'+ = -~ ' - .  Moreover, II'~/,(x)ll = II Ade(x)~(Tx)ll = 

II~/'(Tx)ll- Hence II~Cr)ll is constant for a.e. x e T, by the ergodieity of T. 
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Let ~5 C L2(T x SU(2),su(2)) be given by ff(.r,g) = Ad9 L(~)(x). Then 

~5(T~(x, g)) = Ad~(U"(L(~))(x))  

for any integer ~. Therefore 

n - 1  

Adg L(~( ' ) ) (x)  = -~ 
k=O 

and 
71 

( 1  ) 1 ~ ~(T~_k(x,g))" Adg L(~( - ' ) ) (x )  -- 7~ 
k = l  

1 n - 1  1 K -~n By the Birkhoff ergodie theorem ; Ek=0 ~5(r;'(.v, g)) and n / -~k= i  @ ( T ~ k (  x '  g)) 
converge for A (.? p-a.e. (x, g) E ~I" x SU(2) (p is the normalized Haar measure of 
SU(2)). Consequently, by the Fubini theorem, ~L(~( ' ) ) (x)  and 1L(~( - ' ) ) (x )  

converge for a.e. x E T, wtfich completes the proof. II 

Definition 1: The number 

lira nlL(~;(') ) = inf 1L(~(,~)) II ,ll 
,~ --~ q- oo L I ( T )  ,TeTg\{0}  L I ( ~  " ) 

will be called the d e g r e e  of the eoeycle ~ and denoted by d(~). 

It is easy to check that degree is invariant under the relation of Cl-eohomology. 

The following theorem indicates an important property of eoeyeles with nonzero 
degree. 

THEOREM 1.2 (see [2]): Suppose that ~2: T -+ SU(2) is a Cl-eocyele with d(~) # 

O. Then the skew 1)roduct is not ergodic and ~ is cohomologous to a measurable 

cocycle of the form 

where 7: T -+ T is a measurable fimction. Moreover, aH ergodic components of 

T~ are metrically isomorphic to the skew product T,: T x T --+ T x T and T.  is 

mixing on the orthocomplement of the space of fimctions depending only on the 

first wariable. 

1.3 MAIN RESULTS. An important question is: what can one say on values 
of degree? It is easy to see that if a eoeyele 9; is eohomologous to a eoeycle 

with values in the subgroup ~ via a smooth transfer function, then d(~;) E 2zrN. 
Moreover, if'or is the golden ratio, then the degree of any C2-cocycle belongs to 
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27rN (see [2]). In the paper we extend this result to all irrational a (see Theo- 

rem 2.7). A completely different phenomenon occurs in the case of cocycles over 

multidimensional rotations. For details we refer to [2, §8,9]. Moreover, we prove 

that  degree is invariant under the relation of measurable eohomology (see Theo- 

rem 2.10). The proofs of Theorem 2.7 and 2.10 are based on the renormalization 

algorithm for some Z%actions on R x SU(2) presented by R. Krikorian in [6] and 

on the following result. 

THEOREM 1.3: For eveo" C~-cocycle 4: T -+ SU(2) we have 

lira 1, DL(p("I)(x)  = 0 
n-+-t- OC nz 

for a.e. .r  E T. 

Proof: First el)serve that  
n - I  k - 1  n - I  

1 E E [ U J L ( 4 ) , U ~ , L ( 4 ) ] +  1 E U ~ . ( D L ( 4 ) ) ,  , D L ( , ~  (''1) = n~  n-5- 
k = 0  j = 0  k = 0  

, D L ( 4  ( - ' ) )  - n, 2 n~ 
k = l  j = l  k = l  

for any natural n ¢ 0. Next note that  if {ak}kEN is a bounded sequence in su(2) 

such that  ~ Y~k=l a, converges, as 'n --+ +ec,  then 

n k -  1 

± E E[a  ,"k] / /2 
k = l  j = l  

tends to zero, as n --+ +oc. This follows by the same method as in [2, Prop. 6.6]. 

It  follows that  
1 

lira " . V r ( 4 t ~ ) ) ( . r )  = 0 
n-+q-cx~ II z, 

whenever 

lira 1L(4(~))(x)  
n - +  :t:c~ I~ 

exists. Now applying Theorem 1.1 completes the proof. | 

Now assuming Theorem 2.7 we get the following simple conclusion. 

COROLLARY 1.4: Let ct be an irrational number and let A: T --+ SU(2) be 

a constant coc'yele. Suppose that 4: T --+ SU(2) is a C'2-cocyele such that 

114 - AIIc~ < 2~. Then d(4) = O. 

Proof: Since d(4) _G IIL(4)llc, o and IIL(4)llco < 27. we have d(4) < 2rr. As 

d(4)  E 2rrN we obtain d(4)  = 0. | 



Vol. 139, 2004 DEGREE OF COCYCLES 299 

We should compare this with the following result, which is due to M. Herman 

[4]. 

PROPOSITION 1.5: For ally irrational ct the ctosm'e (in the C~'-topology) of the 
set of all CeC-cocvcles which are not C~-cohomologous to al~v constant cocvcle 
contains the set of all constant cocycles. 

It follows that for any irrational a there exists a C~-cocycle ~: ~i" --+ SU(2) 

with d(~) = 0 which is not C°+-cohonmlogous to any constant cocycle. For 

any r C N and w E R we will denote by exI),.~,,: T -+ SU(2) the cocycle 

exp"~"('r)=e'2~(":~'+~")h'whereh=[: -iOi]" On the other hand, in Section 3 

(see Theorem 3.1) we show that if ca satisfies a Diol)hantine condition, then ev- 

ery C~-cocycle ~: T --+ SU(2) with d(~) = 27rr ¢ 0 is C~+-cohonlologous to 

a cocycle exp,.,~, (this result has been indei)endently observed by R. Krikorian 

but has not been published). This indicates the next essential difference between 

cocycles with zero and nonzero degree. The proof of Theorem 3.1 is based on a 

result (see Proposition 3.3) describing C°+-cocycles in some neighborhood of the 

cocycle exp,..0, and which was proved by R. Krikorian [6, Th. 9.1]. 

2. Values of degree 

2.1 Z2-ACTIONS ON ]~ × SU(2) AND THE RENORMALIZAT1ON ALGORITHM. For 

the background of the contents of this section we refer the reader to [6]. Let 

s c N U {oc}. For any a E R and A E Cs(]R, SU(2)) we will denote by (~,A) : 

R x SU(2) -+ R x SU(2) the skew product 

g) = (x + A(x) ) .  

Let a be an irrational number. We will consider Z2-actions on N × SU(2) of the 

form ((1, C), (a, A)), where A, C E C's(R, SU(2)),  i.e., Z2-actions generated by 

comlnuting skew products (1, C) and (a, A). Suppose that ((1, C), (~, A)) is a 

Z2-action. Then 

A(x) .  C(;r + c~) = C(z) . A(.r + 1) 

for any real z. Note also that if C = Id, then A: R --+ SU(2) is a periodic 

function of period 1. Therefore we can identify any cocycle A: T --+ SU(2) over 

the rotation Tz  = x + <~ with a Z2-action ((1, Id), (a, A)). We can extend also 

the relation of cohomology to g2-actions. Two Z2-actions ((1, C1), (a, A1)) and 

((1, C2), (c~, A2)) are C~-eohomologous  if there exists B E CS(~:, SU(2)) such 
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that 

or equivalently 
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(0, B) o (1, C1) O (0, ~)--1 =(1, C2), 

(0, B) o (a, Ax) o (0, B) -1 =(Oz, A2) , 

B(x)  - 1 .  Cl (X) .  B ( x  q- 1) =C2(x) ,  

B(x) -x" Al(x)" B(:c + a) =A2(x). 

Notice that every Z2-action ((1, C), (a, A)), where A, C E Cs(R, SU(2)), is C a- 

cohomologous to a cocycle ((1, Id), (a, A)). For details we refer to [6]. 

Assume that a E [0, 1) is an irrational nmnber with continued fraction 

expansion 

O~ = [0; ax, (t 2 . . . .  ]. 

Let (Pk/qk)~T=-X be the eonvergents of c~ (P-1 = 1, q-x = 0). For every k >_ - 1  

set 

fit,, = (-1)k(qt,,c~ --Pk) and ct~. = [0;a~+x,ak+2 . . . .  ]. 

Then 

1 1 < &  < - - ,  
(1) qk + ql,,+l qt~+l 

(2) ~k-2 = akflk-1 + ilk, 

(3 )  /3k = c~0.  c~1 . . . . .  c ~ ,  

(4) flkqk+x + fl~:+lqk = 1. 

Let ((1, C), (a, A)) be a Z2-action such that A, C e Ca(N, SU(2)). Consider 
r O~ the sequence {([.~., Vk)}~,=o of Z2-actions defined by 

(U0, V0) =((1, C), (a, A)), 

(G,G) =(Vk-x,Vi-Y?Uk-1) fox" k >_ 1. 

Set 7~k((1, C), (c~, A)) = (U~, V~.). Then 

~, ( (1 ,  c ) ,  (~, A)) =((Uo '~-~ ~o ~-~)(-~>~-' , (Uo '~ v qk)(-~)k) 

=((i lk-l ,  Ck ), (/3k, Ak ) ), 

where Ak, C~ ~ Ca(R, SU(2)). Note that 

(5) (Uo,]ffO) {~qk~/rqk--I [~PkTfPk--l] 

Observe that if C -- Id, then 

(6) CA, ---= A ((-x)~-lqk=') and Ak = A ((-1)~'qk)- 
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For every k E 51 set 

Ct.(x) = Ck(/3k-lX) and ftk(X) = Ak(/3k-lx). 

We will also consider the renormalizations of ((1, C), (a, A)) defined by 

~t,((1, C), (a, A)) = ((1, Ck), (ak, Ak))- 

2.2 DEGREE OF Z2-ACTIONS. Suppose that A , C  C CI(R/TZ,  SU(2)), where 

"~ > 0. Then Ak, Ct, E CI(R/~Z,  SU(2)) for any k C N. Define 

dk = dt~((1, C), (a, A)) = 3k[]L(Ck)[[L~(R/~Z) + 3k-11[n(dk)[In~(~/.~z). 

Of course, dk does not depend on the choice of 7, because we always consider 

normalized Lebesgue measure on R/')'Z. Observe that dk <_ dk-1. Indeed, since 

A,,(x) = Ck-I(x)A~,-I(x + 3k-2 - 3 k - 1 ) . . . A k - l ( x  + 3k-2 - akflk-1), 

c~,(x) = A~._~(x), 

we have 

HL(Ak)[IL~(~/~Z) <_[[L(Ck-1)[[L,(~/-rZ) + aa[IL(Ak-1)I[L,(~/-rz), 

IIL( Ck )]IL'a/~Z) =]IL( Ak- ,  )IILX(~/~Z). 

It follows that 

dk =/3t.][L(C,.)IIL,(~/~z) +/3t,-1]]L(At,-)[lL~(I~/.yz) 

<_ 3t,-1HL(Ct.-1)[]L~(R/~.Z) + (a~,3k-1 + 3t.)[IL(At.-1)[[L~(R/~Z) 

= Ilk-l, 

by (2). 

Definition 2: The number 

d((1, C), (a, A)) = lim d~,((1, C), (a, ,4)) 
k--+o~ 

will be called the degree  of the Z2-action ((1, C), (a, A)). 

Of course, we should check that the above definition is the extension of 

Definition 1. Suppose that A = ~ E CI(T, SU(2)) and C = Id. By Defini- 

tion 1 and (6), 

liln--1HL(Ak)HL,(V ) = lira 1 [IL(Ck)[[L,(V)= d(~). 
k~oo qk k...~oo qf,.-1 

Since/3kqk+l + 3k+lqk = 1, we obtain d(~) = d((1, C), (a, A)). 
In the following two lemmas are presented fundamental properties of degree. 
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LEMMA 2.1: 

the Z~-actions ((1, C), ( a, A ) ) and ((1, Ia), (a, 4)) are C1-cohomologous. 
d(~) = d((1, C), (a, A)). 

Proo~ 

Then 
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Let A, C E C'  (R/'~Z, SU(2)) and ~ ~ C~(T, SU(2)). Suppose that 
Then 

(0, B )  o (/~k-1, Ck) o (0, ~ ) - 1  = (/~k-1, ~((-1)a-lqk-1))~ 

(0, B) o (ilk, Ak) o (0, B ) - '  = (ilk, ~((-1)%k)). 

Hence 
B(x) -1 .  Ck(x) .  B(x  +/~k-1) = 9v((--1)k-'qk-') (X), 

B ( x ) - ' .  Ak(x)-  B(x  +/~k) = ~/9((--1)kqk) (X)  • 

It follows that  

[])L(Ck)[]L,(R/.~Z) - ][L(~((--l)k-l qk-1))[[L'([O,'~))[ 
_< []L(B)[iL,([0,,))+ [[L(B)[iL,([z,=,,z,=,+,)) 

and 

I]IL(Ak)IILI(~¢/~U)- IIL(~2((-1)%~))IILl([O,.~))I 

<_ IIL(B)IIL,([o,~)) + II/(B)IILI(t~,~k+~)). 

Since ~[IL(~(n))(x)l] -+ d(~) in LI(T, R), as n -+ :t:oc (by Theorem 1.1), we have 

lllL(~((--1)kqk))llL,([O,~)) ~ d(~). qk 

Moreover, ]IL( B)I]L ,([Zk,Zk +~)) 4_ 2]IL( B)]ILI([o,2~) ). Therefore 

lira l flL(Ak)IIL,(~/~z ) -- tim 1 IIL(Ck)IfLI(S/~z ) = d(~). 
k ~  qk k--*~ qk-1 

Since/~kqk+l + t~k+lqk ---- 1, we obtain d(p) = d((1, C), (a, A)). | 

Let p E CI(T, SU(2)) and let ((1, Ck), (ak, Ak)) = 7~k((1, Id), (a, 4))- Then 
Ak, d~ e CI(R//3;it z,  SU(2)). 

Let B: R --+ SU(2) be a Cl-function such that  

(0, B)  o (1, C)  o (0, B)  -1  7_ (1, Id), 

(0, B) o (a,  A) o (0, B) -1 = (a,  4) .  
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LEMMA 2.2: d((1, Ck), (etk, Ak)) ---- d(~o). 

Proof  For every ? > 0, by S~: N -+ R we mean the linear scaling S.rx = "yx. 
It is easy to check tha t  

n~ ((1, ck), (etk, ~ik)) 

= ( (~n+k-1/gk-1 ,  C .+k  o S~k_, ), (/~n+k//~k-1, An+k o S~k_l )). 

Therefore 

d,~((1,  Ca), (etk, ftk) ) ----/~,~+k-1//3k-lllL(C~+k o S¢~_I)IIL,(tO,Z::L)) 

+/3,~+k//3k- 11[L(A,~+k o S~k_~ )[[ L~([O,~;2~)) 
- - I  

f /3k- 1 
=/3n+k_ 1 IIL(Cn+k o SZ~_~ )(x)Hdx 

J0 

+/3n+k IIL(A,~+k o S ~ _ ,  )(x)[Idx 
.Io 

=/~n+k-lllL(Cn+k)HLl(T) + ~n+klIL(An+k)I]LI(T:). 

It follows tha t  d~((1, C/¢), (eta, Ak)) -+ d(¢) ,  as n --+ oc, which proves the lemma. 
| 

We recall a quant i ty  g(~2) introduced in [6]. For any function ~2: R --+ SU(2) 

and y E T we will denote by ~y: R --+ SU(2) the function ~y(X) = ~2(x + y). 
Write ((1, C'k,y), (etk, Ak,y)) = ~k( (1 ,  Id), (a, ~2u)). Then  

Ck,u(x) = Ck(x +/3[.l_,y) and 2a,u(x) = Aa(x +/3~711y). 

Let ~2: T --+ SU(2)  be a Cl-cocycle.  For every y e T define 

&(y) = IIL(f%,y)(x)llda: + IIL(Ck,y)(Z)lldx 

F +~-, f~+~ -= I[L(Ak)(x)lldx + IIL(Ck)(.~')[Id.~:. 
• , y  J y  

It. is easy to check (see [6]) tha t  Jk(Y) < Jk- t (Y) .  Let J:  "IF --+ R be given by 

J(y) = l i m k _ ~  Jk(Y). Next  note tha t  J(y  + (~) = J(y) for any y E T. Indeed, 

first observe tha t  

p(n)(x - a )  = p ( x  - a ) -  p(n)(x) • ~p(x + (n - 1)o~) -~ 

for any integer n. Hence 

I I l / ( ~ ( n ) ) (  x - e t ) l [ -  II/(~(n))(-r) l i l  -< IIL(~(x  - et)ll + I IL(~(x  + (n - ~)et)ll- 
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It follows that for every y E T and i -- - 1 ,  2 we have 

fyYL c ~ + S k + i  _LY+/3k+i,,L(~((-1)kq~))(x)[[dx 
IlL(:((-')%))(x)lld.r 

< llL(:)(.r)lldx + IIL(:)(x)lldx -~ O, 
• ,y Jy+(--Dk~k 

because/3k+i --+ 0. Therefore J(y+c~) = J(y), by (6). Since J: T --+ ~ is the limit 

(the convergence is pointwise) of a decreasing sequence of continuous functions, 

it follows that J is constant. Define J(~) = J(y) for ally y E T. In the next 

section we show that if ~2 E C2(T, SU(2)), then J(~)  = d(~;). 

2.3 FUNDAMENTAL LEMMAS AND THE FIRST MAIN THEOREM. Suppose that  

~: T --+ SU(2) is a C2-cocycle. Let ¢,: T --~ su(2) be a measurable function such 

that 
1L(~;O0) --+ '¢, in LI(T, su(2)) and ahnost everywhere, 

as n --+ -4-oo, Ad:(,,)(~/, o T "~) = ~/, and Hg,(x)[[ = d(~) for a.e. x E T (see 

Theorem 1.1). 

We give a few asymptotic properties of the renormalization 7~ which we will 

need in proofs of the main theorems. 

LEMMA 2.3: For a.e. y E T we have 

q~/~ L(~.,~)(.~,) - (-1)%(~1 -+ o, 

1 
L ( d ~ ) ( x )  - ( - 1 ) % ( ~ )  -~ 0, 

q~-1/3~,-1 

uniformly for x E [-1,  1] and Ile(y)ll = d ( : ) .  

We will denote by A(~) the set of all points y E T satisfying the properties of 

Lemma 2.3 and such that  

lim 1L(~OO)(y) = ¢,(y). 

To prove the above lemma we need the following simple fact. 

LEMMA 2.4: Let {cn}.e~ be a sequence of positive numbers which converges to 

zero. Let {fn},,~r~ be a sequence of measurable functions on T with nonnegative 
real values. Suppose that {fn},,e~ is uniformly bounded and f , ( x )  --+ 0 for a.e. 

.vET.  Then 
1 

- S.(x)a:r 0 
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Proof: Fix ~ > 0. By the Egoroff theorenl, there exists a closed set B.  such 

that  X(Bs) > 1 - ~ and 

lim sup f . ( x )  = 0. 
~'/..--)- o c  xEB~ 

Denote by Ae the set of all density points of Be, i.e., 

z~0+  22 

Then A(A~) = A(B~) > 1 - ~. Assume that  y E A~. Then 

1 fY+C'fn(x)d x l i ly  fn(x)dm+ 1Sly fi,(x)dx 

_<2 sup f i , (x)  + A([y - c,., y + c,,] \ B~) sup f , ( x ) .  
x E B.  Cn x E T 

Letting n -+ oc, we obtain 

f l ~+~'~ L, (.)da, ~ 0 1 

Cn d y - c .  

for every y E A~. Consequently, letting ~ -+ 0 conlpletes the proof. | 

Proof  o f  L e m m a  2.3: Let us denote by A'(~o) the set of all points y E T such 

that  

, S T ,  lim , 2 ][DL(~o((-1)%k))(x)[[dx = O, 
k--*oo ! ~ k _ l q k  Y - i  k - t  

aim 1 f ~  ~:~-'- IIDL(+. (<-'>~ q"-'))(*)lldx = 0, 
#,,~oo , /~k_ lq2_ l  V- '  3k-1 

lira 1L(;(") )  = ¢(y) 
n-..+-Fo~ ll  

and II~/,(y)][ = d(~). By Theorems 1.1, 1.3 and Lemnm 2.4, the set A ' (p )  has full 

Lebesgue measure. We claim that  A ' (~)  C A(~;). Assume that  y E A' (~)  and 
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x E [-1,  1]. Then 

~ L ( A k , y ) ( X  ) - X L(~<<-l)kqk))(y ) 

1 .f~k-~ <_ - -  IlOL(~((-1)%~))(z)lldz 
qk --~t:- i 

1 ~y+~k-~ 
IIDL(~ <<-~)%~))(z)lldz =/~a-lqa~a-lq~ u-~-~  

and 

1 ~1 _ 1 L(p((_U%k_l))(y ) 
~ k - l q k - l L ( C  )(x) qk-,  

: l__l_L((~(_l)k-lqk_l))_l)(/~k_lX))__ 1 L(~((_ l )kqk_l ) ) (0  ) 
qk-1 qk-1 

1__ < 1 L(p(y(_ 1)%,._1)) (01 = qk_lL(py(--1)~qk-1))(~k_l(X-- (--1)k)) -- 
qk-1 

1 f2/~_1 <_ - -  IlDL(~((-1)%k-,)l(z)l]dz 
qk-1 J-2/3k_l 

= /~k-lqk--l r)~Ok_lqk_ll 2 ~yY~ilkil l'DL(~((-1)kqk-'))(z)"d z" 

From/3k_lqk_ 1 < ~k-lqk < 1, using Theorem 1.3 and Lemma 2.4 we have 

1 L(fik,y)(x) - ~kL(~((-1)kqk))(y) -+ O, 
qk/~k-1 
1 1 ( :1)( ) L(~<(-1)kqk-'))(y) -+ O, qk-,f lk- ,  L 'C~'u"x" - qk-1 

uniformly for x C [-1, 1] and IIg'(Y)]l = d(~). Moreover, 

1 L(~((_l)kqk_~))(y) _ (_l)a~,(y) --+ 0 
qk-i 

for i = 0, 1. It follows that y C A(~),  and the proof is complete. | 

COROLLARY 2.5: Let 4: T --+ SU(2) be a C2-cocycle. Then J(~)  = d(¢). 

Proo~ Choose y E A(~).  Then 

1 
q ~ _ ~  IIL(Ak,~)(.~')ll -+ d(~), 

1 
qk- ,~k-1 IIL(d~"Yl(x)N -+ d(~), 
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uniformly for x C [-1, 1]. Therefore 

Jk(Y) =qk/~k-1 qk~k-1 [IL( ftk'y)(X)lldx 

+ qA,-1/3k~ 1 qk-19~-, IIL(Ok,~)(~)lldx 

tends to d(~), by (4). It follows that  J(y)  = d(~) for a.e. y E % which completes 
the proof. | 

LEMMA 2.6: Let ~: T -4 SU(2) be a C2-cocycle. Assume that 0 C A(~). Then 

(7) Ak(~) - eL(~) ( ° )~ ik (0)  ~ 0, 

(8) Ck-l(:r) -- eL(C'~-l)(0)xcki(0 ) ~ 0, 

uniformly for x e [-1, 1]. Moreover, the matrices 2~(0), Ckl(0) ,  L(Ak)(0) and 
L (C~. 1) (0) asymptotically commute each other, i.e., 

(9) [L(Ak)(0) , / (C/ ' ) (0) ]  ~ 0, 

(10) L(Ak)(0) - Ad~i~.(o)L(2k)(0) ~ 0, 

(11) L ( C / 1 ) ( 0 )  - A d ~ : ~ ( o ) n ( c ~ - l ) ( 0 )  -4 0, 

(12) L(C~-I)(0) - Ad~ik(o)L(C~-l)(0) -4 0, 

(13) L(Ak)(0) - Ad~-~(o)n(2k)(0) -4 0, 

and i f  d(~) ~ O, then 

(14) Ak(0 )~ [ l (0 )  - 0;1(0)~ik(o)  -4 0. 

Proof'. First note that  

L(ftk)(.~:) - L(eL(fik)(°)(') ft~,(O) )(x) = L(ft~,)(x) - L(-Ak)(0) -4 0, 

L ( C k l ) ( x )  - L(en(f:[')(°>(>C;l(O))(x) = L(C~-I)(x) - L(C~-I)(0) --+ 0, 

uniformly for x E [-1, 1] and 

A~(o) = ~L(~,)(°)°A~(0), 0 ; ' ( o )  = ~L(e; '>(°)°0/ ' (o) .  

This implies (7) and (8). (9) follows immediately from assumption. Since 

l (L(~(n))(0)  _ Ad~(~)(o ) L(~(n))(n~)) = 2(1L(~(~))(0)  _ 1L(~(~n) ) (0 ) )  -4 0, 
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as n -+ +oc, we have 

1 
ql,~/3~_---~(L(,4k)(O) -- hd~i~.(o ) L(Ak)((--1)kc~k)) 

_-- __1 ( / ( ~ ( ( _ i ) k q ~ . ) ) ( 0 )  - -  i d  ((_~)k~k)(0) L(~ ((-1)~qk))((--1)k~k)) -+ 0. 
qk 

Since (1/qk/3k_l)(L(~41,~)((--1)kak)) - - / (Ak)(0))  tends to zero, 

1 
qk/3k_--------~(L(Ak)(O) -- Ad~.(0 ) n(Ak)(0)) -+ 0. 

Similarly, 

1 (L(C~-I)(0) - Ado[~(0 ) L(C[ ' ) (0 ) )  --+ 0. 
qk-1/3k-~ 

This leads to (10), (11), (12) and (13). 

Suppose that d(~) # 0. Then the sequence {]]n(Ak)(0)]]}~= 1 is bounded and 
separated from zero. Since L(-4k)(0) asymptotically commutes with .4k(0) and 
Ckl(0) ,  it follows that 

THEOREM 2.7: Let ~: T -+ SU(2) be a C2-cocycle. Then d(~) E 27~N. 

Proof: First note we can assmne that 0 E A(F), because degree is invariant 

under the rotation by ally element from the circle. Then d(~) = I1~/,(0)11. Next 
assume that d(~) % 0. Since ((1, Ck), (ak, A~)) is a Z2-action, 

Ak(x)" Ol,-(x + ak) = Ck(x)" Ak(x + 1) for any real x. 

Hence 

From (7) and (S), 

Therefore 

C k l ( 0 )  • Z~k(0 ) = Aa.(1). Ckl(C~k). 

A k ( 1 )  - -+ 0, 

0 [ l ( 0 z k )  -- e L ( C k - l ) ( 0 ) " a 0 [ l ( 0 )  --} 0. 

c k l ( 0 ) : ~ k ( 0 )  -- eL('4k )(O) Ak ( O )cL( ~': l )(O)al" c[. l ( o ) -'+ O. 

Applying (9) (14) we get 

eL(.~k)(O)+L(C'~ ~ )(0)c,~. __+ Id. 
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On the other hand, 

L(~ik)(O) + L ( d / ' ) ( O ) ~  

= q#/3k_l~L(.4#)(O) + q~-1/3~ qk-1/3J,.-ll L(C~.-- 1)(0) -+ (,(0). 

Therefore e °(°) = Id  and d(p) = I1~,(o)11 = 2~, , ,  where r e  N. | 

By the same method as in the proof of Theorem 6.3 of [6] one can prove the 

following result. 

LEMMA 2.8: Let ~: T --+ SU(2) be a C~-cocycle and let N be an infinite subset 

of N. Suppose that ~ satisties (7)--(14) and 

IIL(~&~,)(0) + L(dL-~)(O)~.II ~ 2~,  

where r E N \ {0}. Then there exist an increasing sequence {nk}koo_-i in N, 
o o  a sequence {@k}k= 1 in Coc('2, SU(2)) and a real number w s11ch that 

((1, Ck), (c,,,~, r],,~ )) and ((1, Id), (c~,,~, ~A,)) are C~-cohomologous and 

l im I I ~  -exp~, , , l lc ,  = o 
k--e oo 

for any natm'aJ s. 

Additionally, applying Lemmas 2.3-2.8 and Lemmas 2.1 and 2.2 gives the 

following conclusion. 

COROLLARY 2.9:  Let F: "IF --~ SU(2) be a C~-cocvcle with d(p) = 27rr # 0 and 

let N be an infinite subset of N. Then there e.xist y E T, an increasing sequence 

{ '~ ' }F- ,  in ~', a seq,,ence {~k}i~=, in C°°(T, SU(2)) and w ~ R ,~ud~ that 

• the Z2-actions R,,k ((1, Id), (a, ~ ) )  and ((1, Id), (a,, k , PA~)) are 
C °°-cohomologous, 

• d(~k) = d(~) = 27r r, 

• l i m k ~  [[~k - exp,. ~,[]c~ = 0 for any natural s. 

2.4 MEASURABLE INVARIANCE OF DEGREE. It is easy to see that degree is 

invariant under Cl-cohomology. In the simplest case G = T, degree is invariant 

even under measurable cohomology, but the proof of this fact does not work in 

the nonabelian case. Nevertheless, applying the renornmlization algorithm we 

are able to show measurable invariance of degree for C2-cocycles. 
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THEOREM 2.10: Suppose that two C2-cocycles ~2a,~2: T --+ SU(2) are 
measurably cohomologous. Then d(~21) = d(~o2). 

Proo£" Let B: T -~ SU(2) be a measurable transfer function, i.e., 

B ( x )  - 1 "  ~ l ( X )  • B(x + O~) = ~2(X).  

Let us denote by A*(B) the set of all y C T such that 

lira -1 f x  HB(Y + r) - B(y)[[ = 0. 
x--+0 X J0 

The set A*(B) has full Lebesgue measure. Suppose that y E A*(B). Next, for 

every natural k denote by Bk,y: T -+ SU(2) the function Bk,y(X) = B(/~kx + y). 
Then 

IIB ,,y - B(Y)IIL~[O,2] = IlB(3kx + y) - B(y)lldx 

_Z -/3,, Jo I IB(y + r )  - B ( y ) l l d r  -+ O. 

For simplicity of notation let us assume that 0 E z2k(~.91)1"1 z2k(¢2)["1 A* (B)  and we 

will write B~ instead of Bk,0. Since 

(0, B) o ((1, Id), (a, ~1)) o (0, B )  - 1  = ((1, Id), (a, ~2)), 

we have 

(0, Bh,) o ((1, 0k(c21)), (aa, A k ( ~ l ) ) )  o (0, Bk)  -1  = ((1, 6'k(P2)), (ak, Ak(~22))) 

for any natural k. It follows that 

Bk(x) -1" A k ( ~ l ) ( * )  " Bk(X -[- OLk) = Ak(~92)(X) • 

Next choose an increasing sequence {nt~}t~e~ of even numbers such that 

-4,~.(~i)(0) --+ di C SU(2), 

for i = 1, 2 and 

Then 

qnk/3nk_l --+ a. 

L(ftn~)(~2i)(x) --+ a~,(~i)(O) 

unifm'mly for x E [-1, 1] for i = 1, 2 and 0 < a, by (1). Moreover, 
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uniformly for x E [--1, 1] for i = 1, 2, by (7). Since Bk --+ B(0) in L2[0, 2], 

B(0) -~ • e ~ ' (~)(°)~A1 • B(0) = e~ ' (~)(°)~A2 

on [0, 1]. This leads to 

ad(41) = all~/'(41)(O)ll = [[L(ea#'(~)(°)XA1)[I 

= I lL(B(0)  -1"  e a * ( ~ ' > < ° ) X A 1  " B(0))II 

= ]]L(eag'(~2)(°)Xd2)H = a11 /'(42)(0)11 = ad(42).  

Since 0 < a, we conclude tha t  d(41) = d(42). 1 

311 

3. T h e  case of  rotat ions  sat isfying a D i o p h a n t i n e  condi t ion  

For every "y > 0 and a > 1 define 

CD(?,cr) = {or E T;Y~e~\{o}. lez I ka - I I  > 1/( '~k°)} • 

Let us denote by E the set of all c~ E T such that  there exist. ? > 0 and a > 1 for 

which a~, E C D ( %  Cr) for infinitely many  k. Since any set CD(7,  or) has positive 

Lebesgue measure, the set E has full Lebesgue measure, by the ergodicity of the 

Gauss t ransformation.  In this section we prove the following result. 

THEOREM 3.1: Let a E E. Suppose that 4: T --+ SU(2) is a C~-cocycle  with 

d(4 ) = 27rr 7A O. Then 4 is Ca-cohomologous to a cocycle expr, w, where w is a 

real number. 

To prove it we need the following fact. 

LEMMA 3.2: For every 7 > 0, (7 > 1 and r E N \ {0} there exist So E N and 

eo > 0 such that for any c~ E CD(7,  a) and any 4 E C a ( T ,  SU(2))  i f  

• 114- exp~,ollc*o < e0, 
• d ( 4 )  = 2~r," # 0, 

then 4 is C ~-cohomologotzs to a cocyele exp,. w, where w is a real number. 

The above lemma (its proof  will be given later) is a conclusion from the fol- 
lowing result proved by R. Krikorian [6, Th. 9.1]. 

PROPOSITION 3.3: For e~vry "~ > 0, a > 1 and r E N \ {0} there exist so = 

so(~, a, r) E N and ~'o = So(% a, r) > 0 such that for any a E CD(% a ) n ( 1 / 5 ,  1/4) 

and any ~2 E C a ( T ,  SU(2))  i f  [1~2 - exp,, o[Ic~o < eo, then 

• either .1(4) < 2zrr. 
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• or ~ is C~-cohomologous  to a cocyele exp,.,w , where w is a real number.  

Proo f  o f  Theorem 3.1: Take 3 > 0 and a > 1 such that the set N = 

{k • N; o,t~ • C D ( ' ) , a ) }  is infinite. Choose so • N and ~0 > 0 satisfying 

the properties of Lemma 3.2. By Corollary 2.9, there exist y • "2, an increasing 

sequence {nk}k=l in N, a sequence {~2k}A-=l in C~('2,  SU(2)) and a'l • R such 

that 

• ank • C D ( % ~ ) ,  

• the Z2-actions ~,~k ((1, Id), (a,, ~y))  and ((1, Id), (a,~, ~A,)) are 

C ~-cohomologous, 

• d ( ~ , )  = d ( ~ )  = 2 ~ r ,  

• ~k ~ exp~a,,~ in C~°('2, SU(2)). 

Let k be a natural nmnber such that II~k -- expr,~,, HC~o < ~o. By Lemma 3.2, 

~k is C~-cohomologous to a cocycle expr, w ~, where w2 is a real number. Let 

A, C: "2 ~ ff be C~-functions such that 

(1,C) =(fl~,k_l,Id)~'~k o (/3,~k,exp, ~2 o S,~-~ )q"~'-~ 
, , [ n k - - 1  

(a, A) = ( /3 , , - l ,  Id) p"~" o (/'3,~., exp~,w ~ o S,32~_ ~ )P'~-~. 

Since 7 ~  ((1, Id), (a, ~u)) and ((1, Id), (a,~ k, exp~,~,~)) are C~-cohomologous, 

~.~, ((1, Id), (a, ~ ) )  and ((/3,~.-t, Id), (£,~, exp,..,~ o S~:.I_~ )) are C~-cohomo- 
logous, too. From (5) we see that ((1,Id), (~, ~u)) and ((1, C), (a, A)) are C ~-  

cohomologous. Moreover, ((1. C), (a:, A)) is C~-cohomologous to a Z%action of 

the form ((1, Id), (a,, ()), where (: "2 --+ 3: is a C~-cocycle. Then the cocycles Cu 

and ~ are C~-cohomologous. Let g: "2 --+ "2 be a C~-cocycle such that 

and d(g) >_ O. If d(g) <_ 0, then we can take 

0 ] ]1 
o 1 0 o '  

which is also C~-cohomologous to ~ .  It follows that d(g) = r. Since a is Dio- 

phantine, 9 is C~-cohomologous to a cocycle of the form "2 ~ x ~-~ e 2ni(r'r+w3) E 

"2, where u,3 is a real number. It follows that ~ is C~-cohomologous to the 

cocycle expra,,3_y, which completes the proof. | 

3.1 LACKING PROOF. To prove Lemma 3.2 we need the following facts. 
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LEMMA 3.4: For eve~y "1 > 0 and a > 1 there exist  3' > O, a '  > 1 and M E N 

such that  for ever)" a E C D ( %  a) there exists a natm'al nmnber  1 _< m _< M for 

which m a  E (1/5, 1/4) M CD('y ' ,  a') .  

Proof: First recall tha t  if ct E C D ( %  a),  then 

1 1 
~.q--------i; < q, lq ,,°' - P , , I  < --.q,+, 

Hence qn+l < .}q,~-i for any natural  n. It follows tha t  there exists C = C~,a > 0 

such tha t  a E C D ( 7 ,  a)  implies 20 < qr < C. 

Suppose that  a: E C D ( %  a). Then 

1 1 1 1 
< ~ < { q ~ }  < - < - .  

2---C qr 20 zq7 

It follows that  there exists a natural  number  1 < .m' < C such tha t  

1 1 
g < {, , , 'q~o} < ~. 

Hence there exists a natural  number  1 < m < M = C 2 such that  too, E (1/5, 1/4). 

Moreover, 
1 1 

[ k m a - I  I > - -  > - -  

~ m O  k o - ,) M o k o  

for any k E N \ {0} and l E Z. Therefore we can take M = C 2, ~' = ~ M  ° and 

a '  = a,  and the proof  is complete. 1 

LEMMA 3.5: Let  4: T -+ SU(2)  and ~: T -+ 'I7 be C a cocvcles. Let  m # 0 be a 

natural  number.  Suppose that ~(m) and ~(")  are C~-eohomologous  as cocycles 

over the rotation T "~ and d(~)  # O. Then there e.xists A E • such that  the 

cocvcles ~ and ~ • A m'e C~-cohomologous ,  too. 

Proof: Let g: T --~ T be a C~-cocyc le  such that  

g ( x )  " 

Then 27rid(g)I = d(~) = d(~) # 0. By Theorem 1.2, there exist measurable 

fimctions p: T --4 SU(2)  and "~: T -4 T such tha t  
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Let q: T -+ SU(2)  be a C ~ - f u n c t i o n  such tha t  

~(m) (x) ---- q(x)((m)(x)q(Tmx) -1. 

Then  

Let  

Isr. J. Math. 

7(m)(x) = o(X) 0 q(Tmx)_l. ~(-~(x) 

where a, b: T --+ C are measurable  functions such tha t  lal 2 + Ibl 2 = 1. Then  

a .  ,~(m) =g(m) . (a o Tin), 

b. 7(m) =g(m) .  (b o Tm), 

ab =(g(m))2 .  ( (ab) o Tin). 

Since d((g(m)) 2) = 2rod(g) ¢ 0, we get either a - 0 or b -- 0. 

CASE 1: Suppose tha t  b - 0. Then  a: T -+ T and 7(m) = g(m) Moreover,  

~°(x) = q(x) [~/5~ x) 7~(x)0] q(Tx)-l '  

by (15). Hence 7a: T --+ T is a C~-cocyc le .  Using a s t andard  Fourier analysis 

me thod  we can assert  t ha t  there exists I E N such tha t  ~/~ = g. e 2Èil/m. Therefore  

: ( x )  = q(x)~(x) o 

CASE 2: Suppose tha t  a = 0. Then  b: T --+ T and 7~m) = g(m). Moreover,  

[o o][o 
~o(x) =q(x)  -b(x) 0 ~/(x) b(Tx) 0 

=q(x) [%;x) 0 %(x)] q(Tx)-~' 

by (15). Hence 7b: T --+ T is a C~-cocyc le  and there exists l E N such tha t  

3-7 : g • e 2 ~ r i l / m ,  which completes  the proof. | 

Proof of  L e m m a  3.2: Fix 7 > 0, a > 1 and r C N \  {0}. Let  ~ '  > 0, 

a '  > 1 and M E N be constants  satisfying the propert ies  of L e m m a  3.4. Take 
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so = s 0 ( 7 ' , a ' )  E N and ~' = ~0 (7 ' , a ' )  C (0, 1) satisfying the proper t ies  of 

Propos i t ion  3.3. Next  choose K,  R > 0 such tha t  

][~(m) _ ~,(m)[[C~ ° _< I([[c; -- ~p[[C~o (1 + ][C;[[C~o)R(1 + [[~p][C~o) R 

for any i rrat ional  a ,  any cocycles c2,~p • C°°(T,  SU(2))  and any na tu ra l  1 < m _< 

M.  Define ~0 = z ' / (K(27rr  + 2)2R). 

Suppose tha t  a • C D ( 7 ,  ~r) and ~2 is a Coo-cocycle such tha t  

[1c2- exPr,o[[c~o < e0 and 4(4)  = 2~rr. 

Then  there exist a na tura l  nmnber  1 < m < M such tha t  

m a  • CD(~y ', a') Fl (I/5, I/4). 

Therefore  

I1~ <m> - exp(~)[Ic~o -< IQI~ - exp,. o11c,o(1 + II~llc~o)R(1 + Ilexp~,ol[c~o) R 

</~'co([lexp~,ollc~o + 2) 2R 

< Keo(27rr + 2) 2R = e ~. 

Moreover,  j (~ (m) )  = d(~d(m)) = 27rrm and eAt,,.,0~"(m) = exPrm, v, where v = 

r m ( m  - 1)c~/2. By Proposi t ion  3.3, ~2 (m) is C ~ - c o h o m o l o g o u s  to a cocycle 

(m) Applying L e m m a  3.5 we conclude tha t  ~2 is C~-cohomologous  to a expr,w" 
cocycle expr,~,  where w is a real number.  | 

A .  M o r e  a b o u t  d e g r e e  

One may  ask whether  the degree of a cocycle depends on the base ro ta t ion  or 

only on the function, which creates the cocycle. Of  course, the degree of a 

cocycle is independent  of the base ro ta t ion  in the case where G = T. A different 

phenomenon  occurs in the case where G = SU(2) .  For any i rrat ional  ct E T 

and any Cl - f imct ion  ~: T -+ SU(2)  we will denote  by d(9~, c~) the degree of the 

cocycle c 2 over the ro ta t ion  by c~. In this section we show tha t  for any two distinct 

c~1, c~2 E T with c~1 - ct2 ~ 1/2 there exists a Coo-function ~: T --+ SU(2)  for 

which d(c2, c~1 ) ¢ d(~,c~2). For every fl E T let P/~: T --+ SU(2)  be given by 

p ;~(x)=  [e20 ix 0 ] [ cos27r/3 sin27r/3] 
e -2~rix -- sin 2rr3 cos 2rr/3 " 

To construct  the desired function, we have to know d(pi~, a)  for any i rrat ional  

~. Obviously, if [3 is equal to 0 or 1/2, then d(p/~, c~) = 2zr for any i rrat ional  ct. 
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Suppose tha t  0 -~/3 -~ 1/2. It is easy to check tha t  [IL(pl~))(.v)][ = 47r[ cos27v/3[ 

for any x E T and any irrational a .  Therefore 

inf 1 (,) 1 
= - I IL(p~  )[IL'(~) -- 211L(p(f))l lv(v) = 2rrlc°s2~r/31 < 27r. d(p.~, 0~) 

n~r~\{o} n 

It follows tha t  d(pz, o) = 0 for any irrational ~. 

THEOREM A. I :  Let al,tx2 be distinct elements o f t  such that (xl - o:2 ~ 1/2. 

Then there exists a C°°-fimction q~: T --~ SU(2)  for which d(~, ax) # d(~, ct2). 

Proof: Set 

Then  
cos 27r/3 

- sin 27r/3 

for any 3 E T. Define 

Then  

[1147 i147] 
A=[il47 1 / 4 7 J  " 

sin 27rl3 ] = Ada  [ e2~rii3 
cos2~3J  [ 0 

] [ o  ] 0 e 27r~ + a l )  0 
e_27ri x A e27r i (xToq)  . 

e--27r ix e2rr'i (x-l-c~2) • 

Therefore ~ and P0 are C~-cohomologous  as coeycle over the rota t ion by cq 

and p and Po2-al  are C~-cohomologous  as cocyele over the rota t ion by a2. It 

follows tha t  
d(v% (Xl) =d(po, c~1) = 1, 

d(~, a2) =d(po,.-al, a2) = O, 

and the proof  is complete.  | 
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